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1. Introduction

In this paper we propose a new nonparametric test of affiliation, a strong form of positive depen-

dence with independence as a special, knife–edge, case. The test is consistent against all alternatives

to affiliation, i.e. under the alternative hypothesis (no affiliation), the rejection probability converges

to one as the sample size increases to infinity. The test has many uses, including testing the fun-

damental assumptions of auction theory, differentiating between heterogeneity which is observed to

the bidders (but not to the econometrician) and heterogeneity which is unobserved, and testing for

collusion. Our test is nonparametric in the sense that it does not require any ex ante distributional

assumptions nor indeed a model. It uses empirical distribution functions (EDF), but does require a

sample–size dependent input parameter.

Milgrom and Weber (1982) established the existence of a pure strategy equilibrium featuring a

monotonic bid function in a wide variety of auctions settings. One of their main assumptions is

that signals (or values1) are affiliated. De Castro (2007) has established that if affiliation is replaced

with even a slightly weaker notion of positive dependence,2 then the existence of a pure strategy

monotonic equilibrium is no longer guaranteed. However, as de Castro has shown, the class of

cases in which affiliation is satisfied is small relative to the class of cases in which a pure strategy

monotonic equilibrium exists. Indeed, affiliation is an extremely strong form of positive dependence,

and therefore questionable, but it is not routinely tested in empirical work. Our test allows one to

test the affiliation assumption on the raw data, i.e. before any modelling assumptions are made.

If the bid function is monotonic, then affiliation of the signals implies affiliation of the bids. Thus,

a rejection of affiliation of the bids means that either the signals are not affiliated or that the bid

function is nonmonotonic for reasons other than failure of affiliation. Similarly, although our test is

consistent against departures from the null of affiliation of bids and such consistency persists if bid

functions are monotonic, it is possible (although unlikely) that nonaffiliated signals combined with

a nonmonotonic bid function generate affiliated bids.

Even if the number of bidders n is endogenous or there is unobserved heterogeneity z, our test of

affiliation can be applied provided that n and z are affiliated with signals under the null hypothesis,

albeit that then bids can be affiliated without signals being affiliated. Our test can also be used in

the case of asymmetric bidders, provided that the nature of such asymmetry does not destroy the

monotonicity of the bid function.

1We will use the word ‘signal’ here to signify either ‘signal’ or ‘value’ depending on the pertaining paradigm.
2Except with two bidders, in which case it can be weakened only a little.
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A second use of the proposed test is to study the nature of heterogeneity z, which is unobserved

to the econometrician. Assume that z is affiliated with bids and that n is exogenous. Then if z is

observable to the bidders (independent private values, IPV), as was assumed by Athey et al. (2004),

then bids are affiliated with n. However, if z is not observed by the bidders (affiliated private values

(APV) or any common values (CV) model), as was allowed for by Krasnokutskaya (2004),3 then

Pinkse and Tan (2005) have shown that bids can be decreasing in n. So a rejection of affiliation of

bids and n constitutes a rejection of the IPV model.4 This conclusion continues to be true when n

is endogenous and affiliated with z and bids under the null hypothesis, but a rejection of the null

hypothesis (when it is false) is then far less likely.

A further possible application is in the study of collusion. Most tests of collusion that have been

proposed (e.g. Bajari and Summers (2002), Bajari and Ye (2003), and Porter and Zona (1993))

exploit the fact that collusion generates asymmetry in the bid distributions.5 Others use informal

arguments (e.g. Marshall and Marx (2008)) or a structural model (Baldwin et al. (1997)) to as-

sert/detect the presence of collusion. We exploit a difference in dependence structure. For instance,

if in an IPV auction, ring members other than the designated winner do not submit bids and cartel

participation varies across auctions, then bids are no longer necessarily affiliated with n.

Asymmetry in the bid distributions also arises if there is asymmetry in the signal distributions,

so finding asymmetry using e.g. the Bajari and Ye test does not ‘prove’ collusion. Likewise, there

are explanations other than collusion that could explain rejection of the competitive null hypothesis

using one of the methods we propose. So multiple tests of collusion should be used to form a more

complete picture (see Harrington (2008)).

The proposed test is intended as a diagnostic test and hence does not rely on a model. An

advantage is that it is widely applicable and can help direct one to the right model. For instance, in

our empirical implementation (section 5), some of our test results strongly suggest that in one of the

auction data sets used the number of bidders is endogenous. A second plus is that the test results

are not colored by the model; a misspecified model generally causes any subsequent (affiliation) test

results to be invalid. We favor using tests before and after the formulation of a model, e.g. first

3In fact, Krasnokutskaya estimates the fraction of z which is observable to the bidders within a fully structural
model.

4Please note that a direct test of how bids at a particular signal vary with n requires a correctly specified structural

model. If the bid function for a fixed set of signals is decreasing in n, then a test of affiliation will pick this up (in the

limit), but a traditional reduced form test (e.g. Gilley and Karels, 1981) consisting of a regression of bids on n will
not.

5More precisely: exchangeability fails.
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on the raw data and subsequently on the signals implied by the model obtained along the lines of

Guerre et al. (2000).

Our test is based on EDF’s, i.e. standard nonparametric estimates of distribution functions, and

we do not require any ‘bandwidths,’ as would be the case with nonparametric kernel estimation.

However, our test necessitates the choice of a sample–size dependent input parameter βn; in kernel–

based tests one would need to choose both bandwidths and βn. Our simulation results suggest that

the results are affected by the choice of βn, but not to an extent that should be cause for concern.

Despite the popularity of the affiliation assumption in auction models, econometric methods for

testing it have not been well developed. The only papers that we are aware of in this regard

are de Castro and Paarsch (2008) and Li and Zhang (2008). De Castro and Paarsch formulate

their test within the confines of a model, but their test could be applied to raw data, also. They

discretize the distributions of interest which provides multinomial likelihoods. Then, they compare

the loglikelihoods that are maximized with and without a number of inequality restrictions implied

by affiliation. They derived the null distribution of their test, which is nonpivotal and nonstandard.

The null distribution of our test is standard normal and we prove that our test is consistent againt

all departures from the null of affiliation. Li and Zhang’s (2008) test of affiliation is different from

ours in that it is both parametric and it is framed in the context of an entry model.

Our paper is organized as follows. In section 2 we introduce our test. The validity of our

test depends on a weak technical condition, which is further explained in section 3. We then

study the performance of our test in a series of simulation experiments (section 4), followed by an

implementation in three important data sets (section 5).

2. A Consistent Nonparametric Test

Consider an independent and identically distributed sequence of random vectors ξ1, . . . , ξn ∈ Rd.

Our goal is to test for the affiliation of any of this sequence, say ξ.

The definition of affiliation we use is equivalent to that of Milgrom and Weber (1982), lemma 1.

Let a ∨ b denote the element–wise maximum of a, b and a ∧ b the element–wise minimum, and let

B(a, δ) be a cube with volume δ and centroid a.

Definition 1. The elements of a random vector ξ ∈ Rd with joint distribution function F are

affiliated if for any two vectors a, b ∈ Rd and any δ > 0, Q(a, b; δ) = pδ(a)pδ(b)−pδ(a∨b)pδ(a∧b) ≤ 0,

where pδ(a) = P [ξ ∈ B(a, δ)].
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Figure 1. Affiliation

The definition is illustrated in figure 1 for d = 3. Boxes A,B,C,D correspond to B(a, δ), B(b, δ),

B(a ∨ b, δ), and B(a ∧ b, δ), respectively. Under independence, Q = 0 for all a, b, δ. An equivalent

definition for continuous F is that f(a ∧ b)f(a ∨ b) ≥ f(a)f(b) for all a, b, where f is the density

function corresponding to F .

Our test statistic is based on the quantity

T (Q) =
∫
m

{
Q(a, b, δ)

}
w(a, b, δ)dadbdδ =

∫
mdW, (1)

where m(Q) = max(Q, 0), w is some continuous nonnegative function such that for any a, b in the

support of F , limδ↓0 w(a, b, δ) = w∗(a, b) > 0. By definition T (Q) is positive whenever Q is positive

on a set of nonzero measure.6

It is possible to estimate T directly, but the limiting distribution of the resulting test statistic

would be nonstandard, depend on Q, and would have to be simulated. We have opted instead to

adjust the ‘kink’ in m by the introduction of a sample–size–dependent function gn. Dropping the

(a, b, δ)–argument, let

Tn(Q) =
∫

Q>−βn

QdW, (2)

6It would be possible to develop a Kolmogorov–Smirnov–style test instead of using our Cramér–von Mises approach.

We have not done so because of the greater computational difficulty with Kolmogorov–Smirnov type tests.
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with βn ≺ 1 an input parameter, where ‘≺’ indicates that the quantity on the left converges faster

than the quantity on the right. We introduce βn to obtain a desirable limit distribution under the

null hypothesis.

We can then estimate the function Q by its sample analog, Q̂, given by

Q̂(a, b, δ) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

h∗ij ,

with h∗ij = I
(
ξi ∈ B(a, δ)

)
I
(
ξj ∈ B(b, δ)

)
− I

(
ξi ∈ B(a ∨ b, δ)

)
I
(
ξj ∈ B(a ∧ b, δ)

)
. Our test statistic

then has the form

τ̂ =
√
n
Tn(Q̂)

2v̂
, (3)

where v̂ =
√
v̂2, where v̂2 estimates some positive v2. The idea is that as the sample size increases,

Q̂ converges to Q and Tn converges to T , so Tn(Q̂) converges to T (Q), which is zero under affiliation

and positive absent affiliation. Since our (yet to be defined) v̂ is bounded, the
√
n–norming then

ensures consistency of our test.

So for consistency all that is required is that v̂ is positive and bounded, but its choice is motivated

by the test statistic properties under the null. Let hij =
∫

Q=0
(h∗ij +h∗ji)dW/2 and v2 = V E[h12|ξ1] =

E[h12h13]− (Eh12)2. Further, let hnij =
∫

Q̂>−βn
(h∗ij + h∗ji)dW/2, and

v̂2 =
(
n(n− 1)(n− 2)

)−1
n∑

i=1

∑
j 6=i

∑
t6=i,j

hnijhnit −
((
n(n− 1)

)−1
n∑

i=1

n∑
j 6=i

hnij

)2

. (4)

We are now in a position to state our consistency theorem.

Theorem I (Consistency). For any C <∞, limn→∞ P [τ̂ > C] = 1.

The consistency theorem is simple and essentially requires no assumptions. Asymptotic validity

is trickier. The main problem is that if the elements of ξ are strictly affiliated, then any test will

necessarily be conservative in that the asymptotic rejection probabilities are less than the intended

significance levels. A consequence of this is that if on large parts of the support ξ is strongly affiliated

and affiliation is violated only in a small area, our test is likely to have little power in samples of

moderate size. We make the following assumption.

Assumption A. For ξ ∼ F , either (i) the elements of ξ are independent, or (ii) for some 0 < γ <∞

and some 0 < cγ < 1, the function ψ(t) =
∫
−t<Q<−cγt

dW satisfies lim supt↓0
(
tγ/ψ(t)

)
<∞.

Part (ii) of assumption A is nonprimitive and conditions under which it is satisfied are discussed

in section 3. It should be noted, however, that generating a relevant scenario under which (i) and (ii)
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are both violated takes some work. Typically γ can be taken to equal d/(2dc), where dc is the number

of elements of ξ with continuous distributions. So in case all variables are continuous, γ = 1/2. The

case where all variables are discrete is of little practical interest and the null of affiliation can then

be tested more directly by comparing probabilities of each of the realization combinations occurring.

Theorem II (Asymptotic Validity). Let assumption A hold and let Cα be the 1−α quantile of the

standard normal distribution. If βn is chosen such that 1 � βn � n−1/(2+2γ) then under the null

hypothesis, lim supn→∞ P
[
τ̂ > Cα

]
≤ α, with equality in case (i) of assumption A

Note that in many instances our test is conservative in the sense that it rejects less often than

the significance level would suggest, even asymptotically. This is natural if one considers the case of

a t–test for the mean of an i.i.d. sequence, where the null hypothesis is that the population mean is

either zero or negative. If the population mean in fact is negative, then such a t–test will reject less

than 5% of the time at a 5% level of significance. Indeed, in the limit the probability of rejection is

then zero. Our situation is similar, albeit that now independence is the knife edge case.

3. Assumption A

In this section we investigate conditions under which part (ii) of assumption A is satisfied. The

discussion below presumes throughout that the null of affiliation is satisfied, but that the vector

ξ does not entirely consist of mutually independent variates. We first state and then explain a

sufficient condition for assumption A(ii).

Assumption B. There exists a set S ∈ Rd×Rd of positive measure and numbers 0 < ρ, δ̄, cρ, Cρ <∞

such that

∀(a, b) ∈ S, 0 < δ < δ̄ : cρδρ ≤ −Q(a, b, δ) ≤ Cρδ
ρ.

Theorem III. If assumption B is satisfied then so is part (ii) of assumption A for γ = 1/ρ.

To illustrate assumption B, first suppose that ξ has a continuous density f at a∗, b∗, a∗ ∨ b∗, a∗ ∧

b∗ and λ(a∗, b∗) = f(a∗ ∨ b∗)f(a∗ ∧ b∗) − f(a∗)f(b∗) > 0. Then for some 0 < δ∗, λ, λ̄ < ∞,

B(a∗, 2dδ∗), . . . ,B(a∗ ∧ b∗, 2dδ∗) do not intersect and for all a ∈ B(a∗, δ∗), b ∈ B(b∗, δ∗) we have

λ ≤ λ(a, b) ≤ λ̄. Then by construction,

∀δ ∈ (0, δ∗), (a, b) ∈ S : λδ2 ≤ −Q(a, b, δ) ≤ λ̄δ2,

and assumption B is satisfied with ρ = 2.
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If ξ contains discrete regressors then the above argument largely carries through, albeit that |Q|

only increases at a rate of δ2dc/d.

4. Experiments

To investigate the performace of our test statistic we have conducted a number of simulation

experiments. In our first set of experiments we investigate its behavior under the null hypothesis,

and especially how its size varies with the choice of input parameter βn. Consider figure 2. All

0.0010 0.0020 0.0030 0.0040 0.0050 beta     

0.010

0.020

0.030

0.040

0.050

0.060

0.070

p n=500, independence
n=1000, independence
n=500, positive dependence
n=1000, positive dependence

Figure 2. Size and βn

four curves depict the size of the test as a function of βn if d = 2; results for d = 3 are not depicted

here, but they are similar. The top two curves are for the case in which the random variates are

independent and are drawn from a standard uniform distribution. The size curves are both flat

and close to the desired value of 0.05, which is encouraging. As expected, however, with positive

dependence our test rejects less than 5% of the time, even in large samples; see the discussion in

section 2.
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Figure 3. Power and βn

The choice of βn also affects the power. The results in figure 3 are for the scenario ξi1 =

(ui1 + ui2)/2, ξi2 = (ui1 − ui2 + 1)/2, where ui1, ui2 are standard uniform random variables. As one

might expect, a smaller choice of βn results in greater power and more observations means more

power.

Given the above results we use βn = 0.02/ 3
√
n from hereon. We have conducted two more sets of

experiments in which the null of affiliation is violated with d = 2. The results are tabulated in table

1. The data generating processes (DGPs) used were created to allow for affiliation to hold on part

of the support and be violated elsewhere. They are defined as follows.
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DGP1 Let ui1, ui2 be mean zero unit variance joint normal random variates with correlation ρ.

Then ξi1, ξi2 are given by

Φ(ui1)/2, Φ(ui2)/2, w.p. 0.25,

independent U(0, 0.5), U(0, 0.5), w.p. 0.25,

independent U(0.5, 1), U(0, 0.5), w.p. 0.25,

independent U(0.5, 1), U(0.5, 1), w.p. 0.25,

where Φ is the standard normal distribution function.

DGP2 For a fixed a ∈ (0, 1), let ui1, ui2, ui3 be independent random variables from U(0, 1), U(0, 1), U(0, a),

respectively. Then, ξi1 and ξi2 are given by
(ui1 + ui3)/2, (ui2 − ui3 + a)/2, if ui1 < a and ui2 < a

(ui1 + (1− a)ui3/a+ a)/2, (ui2 + (1− a)ui3/a+ a)/2, if ui1 ≥ a and ui2 ≥ a

ui1, ui2, otherwise.

Given the absence of a natural competitor to our test, our power experiments are of limited use.

Nevertheless, it is good to see that our test can pick up even modest violations from the null

hypothesis; ρ = −0.8 in DGP1 corresponds to a correlation of only −0.049 between ξi1 and ξi2.

DGP2 is designed to illustrate that affiliation is a stronger notion of positive dependence than

positive correlation. In particular, when a is chosen to be close to 0, ξi1 and ξi2 are positively

correlated but they are not affiliated. As one would expect, the power of the test increases as the

amount of negative dependence increases and the number of observations increases. We conducted

n = 300 n = 500 n = 1000

DGP1 ρ = −0.6 (−0.032) 0.115 0.129 0.210

ρ = −0.7 (−0.040) 0.133 0.184 0.353

ρ = −0.8 (−0.049) 0.167 0.254 0.684

DGP2 a = 0.50 (−0.001) 1.000 1.000 1.000

a = 0.10 (0.245) 1.000 1.000 1.000

a = 0.03 (0.397) 0.950 0.997 1.000

a = 0.01 (0.463) 0.377 0.674 0.968

The numbers in parentheses show the Monte Carlo correlation between ξi1 and ξi2.
Table 1. Power of the test
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similar experiments for the d = 3 case, which are not tabulated since they carry largely the same

message.

5. Applications

We implemented our test in three data sets, namely the Offshore Continental Shelf (OCS), Cal-

ifornia Department of Transport (Caltrans), and Russian Federal Subsoil Resources Management

Agency (RFSRMA) data sets. In the case of both OCS and RFSRMA the object auctioned is the

right to drill for oil (and gas). The Caltrans data set contains data on construction projects.7

The OCS data has been used in a number of other papers, including Hendricks and Porter (1988)

and Hendricks et al. (2003). The tracts were auctioned off using a first price sealed bid mechanism.

Data are available on all bids, the identity of the bidders and any ex post revenue the tracts generated

for the winner plus some tract–specific data such as its size and location. We used only data for

wildcat tracts in the 1954–1970 period. The number of tracts used is 1,168. Twelve large firms, who

collectively win the lion’s share of auctions, and a large number of fringe firms participate in these

auctions; joint bids are allowed. More details can be found in Hendricks et al. (2003). Although

the object sold in the RFSRMA auctions is similar, the data are quite different in nature. They are

ascending bid auctions and only the winning bids are recorded. Moreover, there are 117 auctions

instead of 1,168 and the government guarantees the presence of a stated minimum amount of oil in

the field. Marshall and Marx (2008) provide a more detailed description of this data set and note

that certain features of the bid data are suggestive of collusion. The Caltrans data consist of data

on bids (including identities and locations of bidders) and a small number of project characteristics

for 2,152 construction projects between January 2003 and January 2008, inclusive.

We first used our test to test for affiliation between two randomly chosen (log) bids per auction

(OCS and Caltrans), both on the raw data and conditional on ex post revenue and the number of

potential bidders8 (OCS) and engineer’s estimate (Caltrans). We then tested for affiliation between

a randomly chosen bid and the number of bidders (all three data sets),9 again with and without

conditioning on other variables. We also tested for affiliation between minimum bids and the number

of bidders and the minimum of two randomly selected bids and the number of bidders. For the OCS

data we conducted all our experiments both including and excluding the fringe bidders.

7The OCS data are available from Ken Hendricks, Rob Porter, or the authors. The RFSRMA data set is available
from the Center for Auctions, Procurements and Competition Policy website. The Caltrans data are available from
the California Department of Transportation website.

8See Hendricks et al. (2003).
9Since the Caltrans auctions are procurements, we use minus the number of bidders here.
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Conditioning affected the values of the test statistics, but the qualitative conclusions are identical

across the board. In all but one set of tests we cannot reject the null hypothesis of affiliation.

The only exception is the test of affiliation between the lowest bid (including fringe firms) and the

number of bidders in the OCS auction case. Violation of the affiliation assumption in that scenario

is hardly surprising; even in an IPV auction the minimum bid is often not affiliated with the number

of bidders.10

The surprising finding is that affiliation could not be rejected in any of the other cases. In fact,

the test statistic values were invariably negative and typically well away from zero. One possibility is

that the proposed test lacks power. Given the results of our simulation experiments, the number of

auctions and the uniformity of the results, we discount this possibility as a primary cause. A second

possibility is that the independence assumption across auctions is violated, e.g. because of capacity

constraints (e.g. Jofre–Bonet and Pesendorfer, 2003), but this would only affect the denominator of

the test statistic and not its sign.

The results are arguably plausible in the Caltrans case since construction procurement auctions

are typically modelled as IPV auctions, albeit that cost uncertainties could produce a common value

component.11 But for the drilling rights auctions, and especially the OCS auctions, this finding is

less credible.

Mineral rights auctions are generally modelled as common values, with the notable exception

of Li et al. (2000) who used an APV framework. Both with CV and APV, however, bids are not

affiliated with the (exogenous) number of bidders. By far the most likely explanation for our results

is that the number of bidders is endogenous. Endogeneity can arise because higher value tracts

attract more bidders, there are entry costs (see e.g. Li (2005)), there is a binding reserve price, there

are credit constraints, or (less important in the OCS case) there is collusion. As noted before, for

the OCS auctions the results are qualitatively the same after conditioning on ex post revenue, but

possibly the tract has geological features of the tract that would generate a lower prediction of the

amount of oil present, common to all participants, causing some to drop out because of entry costs.

Whatever the precise cause, the conclusion of our results is clearly that modelling the entry decision

is important.

10E.g. if the value distribution is standard uniform.
11In a private conversation, an employee of a large Dutch construction firm which had participated in a large bidding

ring in fact complained that firms had identical but uncertain costs, which suggests a common value environment

(and is puzzling since such uncertainty increases expected profit).



A CONSISTENT NONPARAMETRIC TEST OF AFFILIATION IN AUCTION MODELS 13

References Cited

Athey, Susan, Levin, Jonathan and Enrique Seira (2004), “Comparing open and sealed bid

auctions: theory and evidence from timber auctions,” Harvard University working paper.

Bajari, Patrick and Garrett Summers (2002), “Detecting collusion in procurement auctions,”

Antitrust Law Journal 70–1, pp. 143–170.

Bajari, Patrick and Lixin Ye (2003), “Deciding between competition and collusion,” Review

of Economics and Statistics 85–4, pp. 971–989.

Baldwin, Laura, Marshall, Robert and Jean–François Richard (1997), “Bidder collusion at

forest service timber auctions,” Journal of Political Economy 105–4, pp. 657–699.

de Castro, Luciano (2007), “Affiliation and dependence in auctions,” University of Illinois.

de Castro, Luciano and Harry Paarsch (2008), “Using grid distributions to test for affiliation

in models of first–price auctions with private values,” University of Melbourne.
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Appendix A. Consistency

Lemma A1. H∗ = {h∗(ξ, ξ̃) = I
(
ξ ∈ B(a, δ)

)
I
(
ξ̃ ∈ B(b, δ)

)
− I

(
ξ ∈ B(a ∨ b, δ)

)
I
(
ξ̃ ∈ B(a ∧ b, δ)

)
:

(a, δ), (b, δ) ∈ Rd ×R+} forms a Euclidean class of functions with an envelop function H(ξ, ξ̃) = 2.

Proof. Note first that

F = {φ(ξ, ξ̃) = I
(
ξ ∈ B(a, δ)

)
I
(
ξ̃ ∈ B(b, δ)

)
: (a, δ), (b, δ) ∈ Rd × R+}

forms a Euclidean class of functions with an envelope function F (ξ, ξ̃) = 1, because {B(a, δ)×B(b, δ)}

is a collections of cells in R2d, which is a Vapnik–Cervonenkis (VC) class of sets with its VC index

bounded by 4d + 1 (see e.g. example 2.6.1 of van der Vaart and Wellner (1996)), and therefore F
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forms a Euclidean class of functions by lemma 19 of Nolan and Pollard (1987). Similarly,

F∗ = {φ∗(ξ, ξ̃) = −I
(
ξ ∈ B(a ∨ b, δ)

)
I
(
ξ̃ ∈ B(a ∧ b, δ)

)
: (a, δ), (b, δ) ∈ Rd × R+}

forms a Euclidean class of functions with an envelope function F ∗(ξ, ξ̃) = 1. Since H∗ ⊂ F + F∗,

the lemma follows from corollary 17 of Nolan and Pollard (1987). �

Lemma A2. H = {h(ξ, ξ̃) =
(
h∗(ξ, ξ̃) + h∗(ξ̃, ξ)

)
/2 : h∗(·, ·) ∈ H∗} forms a Euclidean class of

functions with an envelope function H(ξ, ξ̃) = 2.

Proof. It follows from lemma A1 and corollary 17 of Nolan and Pollard (1987). �

Lemma A3. For each ξ, let PH be the class of functions Ph(ξ, ·) with h(·, ·) ∈ H. Then, PH forms

a Euclidean class of functions with an envelop function PH = 2.

Proof. It follows from corollary 21 of Nolan and Pollard (1987), because H is a uniformly bounded

Euclidean class of functions. �

Lemma A4. For some Gaussian process G, (i)
√
n(Q̂−Q) w→ G and (ii) sup |Q̂−Q| ≺ 1.

Proof. Since
√
n(Q̂ − Q) is a U–process with a function class H, we will follow Nolan and Pollard

(1987, 1988) (see also de la Peña and Giné (1999)). We will write Np(ε, R,F , F ) for the (Lp) ε–

covering number of a class of functions F with an envelope function F ; i.e. Np(ε, R,F , F ) is the

smallest cardinality for a subclass F∗ of F such that minF∗ R(|φ−φ∗|p) ≤ εpR(F p) for each φ ∈ F ,

where R(·) denotes the integral with respect to the probability measure R. Following Nolan and

Pollard (1988), we will also write J(δ,R,F , F ) for the L2–covering integral
∫ δ

0
logN2(ε, R,F , F )dε.

Since H is a Euclidean class with an envelope H = 2, there exist some constants K1 and V1 such

that

sup
R
N1

(
ε, R,H,H

)
≤ K1

(
1
ε

)V1

, for 0 < ε ≤ 1,

where sup is taken over probability measures R. Since N1

(
ε, R,H,H

)
is non–increasing in ε, it

follows that

sup
R
N1

(
ε, R,H,H

)
≤ K1

((1
ε

)V1

+ 1
)

for any ε > 0, which implies part (ii) by theorem 7 of Nolan and Pollard (1987).
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For part (i), we use theorem 5 of Nolan and Pollard (1988). Note first that there exist some

constant K2, K
∗
2 , V2, and V ∗2 such that when 0 < ε ≤ 1,

sup
R
N2

(
ε, R,H,H

)
≤ K2

(
1
ε2

)V2

sup
R
N2

(
ε, R, PH, PH

)
≤ K∗

2

(
1
ε2

)V ∗
2

from the fact that both H and PH form Euclidean classes. It then follows that

sup
R
J(1, R,H,H) ≤

∫ 1

0

logK2

(
1
ε2

)V2

dε <∞

sup
R
J(1, R,H,H)2 ≤

∫ 1

0

(
logK2

(
1
ε2

)V2)2

dε <∞

sup
R
J(1, R, PH, PH)2 ≤

∫ 1

0

(
logK∗

2

(
1
ε2

)V ∗
2 )2

dε <∞.

Lastly, note that as δ ↓ 0,

sup
R
J(δ,R, PH, PH) ≤

∫ δ

0

logK∗
2

(( 1
ε2

)V ∗
2 )
dε = δ logK∗

2 − 2V ∗2 δ log δ → 0.

Therefore, the conditions of theorem 5 of Nolan and Pollard (1988) are all satisfied, and part (i) of

the lemma follows from it. �

Lemma A5. Tn(Q̂)− T (Q) ≺ 1.

Proof.

Tn(Q̂)− T (Q) =
∫

Q̂>−βn

Q̂dW −
∫

Q>0

QdW =
∫

Q̂>−βn

(Q̂−Q)dW +
∫

Q̂>−βn,Q≤−2βn

QdW

+
∫

Q̂>−βn,0>Q>−2βn

QdW −
∫

Q̂<−βn,Q≥0

QdW. (5)

RHS1, RHS2 and RHS4 in (5) vanish by lemma A4. Finally, RHS3 is bounded above by zero and

below by −2βn ≺ 1. �

Proof of Theorem I. Since hij is uniformly bounded, so is v̂. Let Cv be an upper bound to v̂, let E

be the event that |Tn(Q̂)− T (Q)| ≤ T (Q)/2, Ec its complement, and write

P [τ̂ ≤ C] ≤ P
[
τ̂ ≤ C, E

]
+ P

[
Ec

]
. (6)

Since T (Q) > 0, RHS2 in (6) vanishes by lemma A5. RHS1 in (6) is

P

[
√
n
Tn(Q̂)
v̂

≤ C, E

]
= P

[
√
n
Tn(Q̂)− T (Q)

v̂
+
√
n
T (Q)
v̂

≤ C, E

]
≤ P

[√
n
T (Q)
2Cv

≤ C

]
≺ 1. �
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Appendix B. Validity

Let Rn = {(a, b, δ) : 0 > Q(a, b, δ) > −βn/2}. Let Zn =
∫

Q=0
(Q̂ − Q)dW , Nn =

∫
Rn

(Q̂ − Q)dW ,

Kn =
∫

Rn
QdW and In =

∫
Q≤−βn/2,−βn<Q̂≤0

Q̂dW .

Lemma B1. lim supn→∞ P [Tn(Q̂) 6= Zn +Kn + In] = 0.

Proof. Note that

Tn(Q̂) =
∫

Q>−βn/2,Q̂>−βn

Q̂dW +
∫

Q≤−βn/2,Q̂>−βn

Q̂dW

=
∫

Q>−βn/2

Q̂dW −
∫

Q>−βn/2,Q̂≤−βn

Q̂dW + In +
∫

Q≤−βn/2,Q̂>0

Q̂dW

= Zn +Nn +Kn + In −
∫

Rn,Q̂≤−βn

Q̂dW +
∫

Q≤−βn/2,Q̂>0

Q̂dW. (7)

The last two terms are zero with probability approaching one by lemma A4. �

B.1. Under condition (i) of assumption A.

Lemma B2.
√
nTn(Q̂) d→ N(0, 4v2).

Proof. Since Nn = Kn = In = 0, it suffices to show that
√
nZn

d→ N(0, 4v2). Now,
√
nZn =

n−3/2
∑n

i=1

∑
j 6=i hij , which is a standard nondegenerate U–statistic. Apply standard U–statistic

theory (e.g. theorem A in section 5.5 of Serfling (1980)). �

Lemma B3. lim supn→∞ P
[
maxi 6=j |hnij − hij | > 0

]
= 0.

Proof. Noting that hnij − hij =
∫

Q̂≤−βn,Q=0
(h∗ij + h∗ji)dW/2, it follows that

P
[
max
i 6=j

|hnij − hij | > 0
]
≤ n2P

[
|hn12 − h12| > 0

]
≤ n2P

[
sup |Q̂−Q| > βn

]
≺ 1,

by lemma A4. �

Lemma B4. v̂2 − v2 ≺ 1.

Proof. Let ṽ2 =
(
n(n−1)(n−2)

)−1 ∑n
i=1

∑
j 6=i

∑
t6=i,j hijhit. Then v̂2− ṽ2 ≺ 1 by lemma B3. Since

ṽ2 is an asymmetric U–statistic, one can apply theorem A in section 5.5 of Serfling (1980). �

Lemma B5. τ̂ d→ N(0, 1).

Proof. Combine lemmas B2 and B4 and apply Cramér’s theorem to obtain the stated result. �
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B.2. Under condition (ii) of assumption A.

Lemma B6. |Kn| � β1+γ
n .

Proof. By assumption A(ii),

|Kn| = −
∫

Q>−βn/2

QdW ≥ −
∫
−βn/2<Q<−cγβn/2

QdW ≥ cγβnψ(βn/2)/2 � β1+γ
n . �

Lemma B7. lim supn→∞ P [Tn(Q̂) > 0] = 0.

Proof. By lemma A4, Nn+Zn � n−1/2 and by lemma B6, Kn � β1+γ
n � n−1/2. Since In is negative,

the stated result follows from lemma B1. �

Proof of Theorem II. In case of condition (i), apply lemma B5, otherwise apply lemma B7. �

Appendix C. Assumption A

Proof of Theorem III. Note that for cγ = cρ/(2ρCρ) and any (a, b) ∈ S, if tρ = (t/Cρ)1/ρ, then for

sufficiently small t > 0,

tρ
2
< δ < tρ ⇒

t

2ρCρ
< δρ <

t

Cρ
⇒ cγt

cρ
< δρ <

t

Cρ
⇒ Cρδ

ρ < t, cρδ
ρ > cγt⇒ cγt < −Q < t.

So ψ(t) =
∫

cγt<−Q<t
dW ≥

∫
(a,b)∈S; tρ/2<δ<tρ

dW � t1/ρ = tγ . �

Lemma C1. By continuity, (a∗, b∗) is an interior point of a set S∗ for which for some 0 <

δ∗, Q̄f ,Qf <∞,

∀(a, b) ∈ S∗, 0 < δ < δ∗ : δQf ≤ |Q| ≤ δQ̄f .

Let n be large enough to ensure that βn/Qf < δ∗. Then

|Kn| ≥
∫

S∗

∫
0<δ<βn/Q̄f

|Q|dW ≥ βn

Qf

Q̄f

∫
S∗

∫
0<δ<βn/Q̄f

dW � β2
n.
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